A hexadecimal number is a number written using the hexadecimal numeration system. The hexadecimal numeration system is a base 16 numeration system. The 16 hexadecimal digits are used:
Hexadecimal Digit | Decimal Value |
---|---|
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 5 |
6 | 6 |
7 | 7 |
8 | 8 |
9 | 9 |
A | 10 |
B | 11 |
C | 12 |
D | 13 |
E | 14 |
F | 15 |
Table 1: Hexadecimal digits |
The letters used for hexadecimal digits with a value of 10 through 16 are always capital letters, never lower case letters.
The place values of hexadecimal numerals are multiples of 16, just as the place values of decimal numerals are multiples of 10.
Place | Place Value |
---|---|
1 | 160 = 1 |
2 | 161 = 16 |
3 | 162 = 256 |
4 | 163 = 4096 |
5 | 164 = 65536 |
6 | 165 = 1048576 |
7 | 166 = 16777216 |
8 | 167 = 268435456 |
Table 2: Hexadecimal place values. |
There are several different ways that are used to identify a series of hexadecimal digits as a hexadecimal number. Some of these are:
Converting a decimal integer to a hexadecimal integer involves several steps:
Step | Hexadecimal | Decimal | Calculations |
---|---|---|---|
Value | Value | ||
1 | n/a | 12530 | Convert the decimal number 12530 to hexadecimal. |
2 | n/a | 12530 | Using the table of place values above, the largest place value less than or equal to 12530 is 4096. |
3 | 3 | 242 | Divide 12530 by 4096. The result is 3R242. The first hexadecimal digit is 3. The next digit will be found using 242. |
4 | 30 | 242 | Divide 242 by 256. The result is 0R242. The second hexadecimal digit is 0. The next digit will be found using 242. |
5 | 30F | 2 | Divide 242 by 16. The result is 15R2. Using the table of hexadecimal digits above, the digit for 1510 is F. The third hexadecimal digit is F. The next digit will be found using 2. |
6 | 30F2 | n/a | Since the next place value is 1, simply copy the 2 to the end of the hexadecimal number. 1253010 = 30F216 |
Table 3: Converting a decimal number to a hexadecimal number. |
When converting a hexadecimal integer to a decimal integer, use the decimal values of the hexadecimal digits in table 1 and the place value table, table 2.
Step | Result | Discussion |
---|---|---|
1 | 30F216 | Convert the hexadecimal number 30F216 to decimal. |
2 | 3, 0, 15, 2 | Convert each hexadecimal digit to its value. |
3 | 3×4096, 0×256, 15×16, 2×1 | Multiply the decimal value of each digit by its place value. |
4 | 3×4096 + 0×256 + 15×16 + 2×1 = 12530 | Add the products together to get the decimal value. |
Table 4: Converting a hexadecimal integer to a decimal integer. |
# | A | B | C | D |
E | F | G | H | I |
J | K | L | M | N |
O | P | Q | R | S |
T | U | V | W | X |
Y | Z |
All Math Words Encyclopedia is a service of
Life is a Story Problem LLC.
Copyright © 2018 Life is a Story Problem LLC. All rights reserved.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License