Un sistema de asuntos es consistente si todos los asuntos en el sistema son consistente. Un conjunto axiomático es consistente si no hay prueba posible de un asunto (P) y de su negada (no P).
# | A | B | C | D |
E | F | G | H | I |
J | L | M | N | O |
P | Q | R | S | T |
U | V | X | Y |
Enciclopedia de Todas las Palabras de la Matemáticas es un servicio de
Life is a Story Problem.org.
Los derechos reservados ©2005-2009 de Life is a Story Problem.org. Todos los derechos reservados.
Este trabajo
se autoriza debajo de una
Creative Commons Attribution-Noncommercial-Share Alike 3.0 License