Cuartila
| Cuadro 1: Cuartilas |
| Cuadro 2: Cuartilas |
|
Una cuartila es uno de tres valores que divide
un grupo de datos en cuatro grupos. Cada grupo tiene el mismo número de
elementos. La primera cuartila, también llamada
Q1, es un número entre el cuarto más bajo del
grupo de datos y el 2do cuarto. LaLa segunda cuartila,
también llamada Q2, es un número entre el 2do
cuarto del grupo de datos y el 3ro cuarto. La segunda cuartila (Q2) es igual
que el punto medio
del grupo de datos. La tercera cuartila, también
llamada Q3, es un número entre el 3ro cuarto y
el 4to cuarto.
|
Cuartilas y porcentajes
Cuartila | Porcentaje |
Q1 | 25to |
Q2 o punto medio | 50.o |
Q3 | 75.o |
Cuadro 1: Cuartila y porcentaje. |
|
La primera cuartila, Q1, es igual que el 25to porcentaje. La segunda cuartila,
Q2, es igual que el 50.o porcentaje. La tercera cuartila, Q3 es igual que el 75.o
porcentaje.
|
Cuartilas calculadoras
Para encontrar las cuartilas de un grupo de datos, el primeros encuentran el
punto medio
del grupo de datos. Si el grupo de datos tiene un número impar de elementos,
utilice el número medio. Si el grupo de datos tiene un número par de elementos,
utilice el medio aritmético de los dos números medios. Esto parte el grupo de
datos en dos porciones iguales. Ninguna de las dos partes contiene el punto
medio. El punto medio es igual que Q2.
Después tome cada mitad del grupo de datos y encuentre el punto medio de
esa mitad. El punto medio de la primera mitad del grupo de datos es Q1. El
punto medio de la segunda mitad del grupo de datos es Q3.
Ejemplos
Paso | Figura | Descripción |
1 |  | Éste es el grupo de datos a dividir en cuartilas. |
2 |  | Puesto que el grupo de datos tiene un número impar de elementos, escoja el elemento medio para el punto medio (Q2). |
3 |  | El número medio divide el grupo de datos en dos mitades. Puesto que el número medio es el punto medio, no se incluye por la mitad cualquier. |
4 |  | Puesto que cada mitad contiene un número impar de elementos, escoja el número medio por la mitad cada. |
5 |  | El centro de la primera mitad y la segunda mitad son Q1 y Q3 respectivamente. |
Cuadro 2: Ejemplo 1 |
Paso | Figura | Descripción |
1 |  | Éste es el grupo de datos a dividir en cuartilas. |
2 |  | Puesto que el grupo de datos tiene un número par de elementos, escoja los dos elementos medios para calcular el punto medio (Q2). |
3 |  | El punto medio (Q2) es el medio aritmético de los dos números medios. |
4 |  | El número medio divide el grupo de datos en dos mitades. Los dos números usados para calcular el punto medio se incluyen por la mitad. |
5 |  | Puesto que cada mitad contiene un número par de elementos, escoja los dos números medios por la mitad cada. |
6 |  | Calcule Q1 como el medio aritmético de los dos números medios de la primera mitad. Calcule Q3 como el medio aritmético de los dos números medios de la segunda mitad. |
7 |  | Para este grupo de datos Q1=3.5, Q2=4.5, y Q3=8. |
Cuadro 3: Ejemplo 2 |
Paso | Figura | Descripción |
1 |  | Éste es el grupo de datos a dividir en cuartilas. |
2 |  | Puesto que el grupo de datos tiene un número impar de elementos, escoja el elemento medio como el punto medio. |
3 |  | Q2 es igual que el punto medio. |
4 |  | Q2 divide el grupo de datos en dos mitades. Puesto que las mitades tienen un número par de elementos cada uno, escoja los dos números medios de las mitades. |
5 |  | Calcule Q1 y Q3 como el medio aritmético de los dos números medios. |
Cuadro 4: Ejemplo 3 |
Citar este artículo como:
Cuartila. 2009-04-03. Enciclopedia de Todas las Palabras de la Matemáticas. Life is a Story Problem.org. https://www.allmathwords.org/es/q/quartile.html.
Traducciones
créditos de imagen
- Todas las imágenes y manipulatives están por David McAdams a menos que estén indicadas de otra manera. Todas las imágenes de David McAdams son & de los derechos reservados; © Life is a Story Problem.org y se puede reproducir para el uso educativo no comercial solamente.
La historia de revisión
2009-04-03: Traducido automáticamente por
BabelFish. (
babelfish.yahoo.com.)
2009-01-12: Versión inicial (
McAdams, David.)